Exercise 57

Find the derivative of the function. Simplify where possible.

$$
y=x \sin ^{-1} x+\sqrt{1-x^{2}}
$$

Solution

Use the product rule, the chain rule, and the derivatives of the inverse trigonometric functions listed on page 214.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x \sin ^{-1} x+\sqrt{1-x^{2}}\right) \\
& =\frac{d}{d x}\left(x \sin ^{-1} x\right)+\frac{d}{d x} \sqrt{1-x^{2}} \\
& =\left[\frac{d}{d x}(x)\right] \sin ^{-1} x+x\left[\frac{d}{d x}\left(\sin ^{-1} x\right)\right]+\frac{d}{d x} \sqrt{1-x^{2}} \\
& =(1) \sin ^{-1} x+x\left(\frac{1}{\sqrt{1-x^{2}}}\right)+\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(1-x^{2}\right) \\
& =\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}+\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot(-2 x) \\
& =\sin ^{-1} x+\frac{x}{\sqrt{1-x^{2}}}-\frac{x}{\sqrt{1-x^{2}}} \\
& =\sin ^{-1} x
\end{aligned}
$$

